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Diabetes mellitus is a worldwide epidemic, and the per-
centage of the US population diagnosed with diabetes 

mellitus between 1980 and 2010 increased from 2.5% to 
6.9%.1 Nearly 27% of people >65 years of age have diabe-
tes mellitus. If current trends continue, 1 in 3 US adults will 
experience diabetes mellitus by 2050. This can be attributed 
to lifestyle choices contributing to obesity.2 One of the main 
causes of death and disability in patients with diabetes mel-
litus are vascular complications, affecting both the macro- and 
the microvasculature.3 Macrovascular manifestations include 
atherosclerosis leading to coronary artery disease, peripheral 
arterial disease, and stroke. Microvascular changes, on the 
other hand, encompass diabetic nephropathy, retinopathy, and 
neuropathy.

Article see p 161

Although there is compelling evidence for the association of 
diabetes mellitus and vascular disease, the underlying patho-
physiological mechanisms remain to be elucidated. Advanced 
glycation end products, as well as reactive oxygen species, 
are suggested to be 2 of the major culprits leading to vascular 
damage.4,5 Extracellular matrix proteins can become glycated 
by nonenzymatic reactions of sugar moieties, which alter pro-
tein function in target tissues.6 Major histological changes are 
apparent in diabetic vessels, including increased intima–media 
thickness and excessive extracellular matrix deposition.5 Yet, 
despite many patients with diabetes mellitus following a tight 
glycemic control regime, they are still experiencing vascular 
complications. Notably, large-scale clinical trials have failed 
to demonstrate that strict glycemic control leads to a reduction 
in cardiovascular risk.7,8 However, although vascular compli-
cations remain as the principal causes of death and disability 
in diabetes mellitus, epidemiological evidence suggests an 
inverse association between diabetes mellitus and aortic aneu-
rysms and dissections.9,10 These findings demonstrate the mul-
tiple facets of diabetes mellitus on the vasculature, and a more 
holistic approach might advance our insights in the vascular 
risk associated with diabetes mellitus at a molecular level.11

In this issue of the journal, Husi et al12 report the results 
of a proteomics analysis of the diabetic mouse aorta. Aiming 
at a comprehensive understanding of the molecular changes 

in the diabetic vasculature, they performed a comparison 
of 5 aortic vessels obtained from control and diabetic mice. 
Diabetes mellitus was induced within 2 weeks after con-
secutive injections of low-dose streptozotocin (STZ). STZ-
induced hyperglycemia was maintained throughout the 
19-week experimental period with an average blood glucose 
level of 395 mg/dL (21.9 mmol/L). A significant thickening 
of the vascular wall in diabetic mice was observed (media 
thickness of 28 μm in diabetic aortas versus 19 μm in con-
trol aortas). The proteomics analysis revealed 2205 nonre-
dundant aortic proteins, of which 72 entries were selected as 
likely differing in both groups based on a P value of 0.05. 
Only limited overlap (<50%) was observed between proteins 
identified in the aortas from control and diabetic mice, sug-
gesting a marked heterogeneity in cellular composition or an 
undersampling of the vascular proteome by mass spectrom-
etry. More targeted proteomics approaches can overcome the 
dynamic range limitations because of high abundant cellular 
proteins.13,14 The context of the differentially expressed pro-
teins was then further explored by bioinformatics analyses 
including gene ontology, interactome mapping (by using 
Michigan Molecular Interactions [MiMI]), or metabolic path-
way (Path Visio) analyses, as well as a literature and Online 
Mendelian Inheritance in Man (OMIM)  database search. The 
bioinformatics approaches suggested that there were pro-
nounced changes in proteins involved in myogenesis, vascu-
larization, hypertension, hypertrophy, as well as a substantial 
reduction of fatty acid storage. Most notably, the identified 
proteins and pathways implicated decreased glycolysis and 
fatty acid metabolism and upregulation of an alternative 
ketone-body formation pathway within the vessel wall. In 
addition, the authors observed a pronounced increase in vas-
cularization, oxidative stress-response proteins, as well as 
apoptosis-related proteins. The most prominent findings were 
validated using immunohistochemistry. The authors justified 
their selected targets for validation by the placement of the 
candidate proteins in molecular pathways, as well as by the 
availability of antibodies. For selected proteins, immunohis-
tochemistry confirmed the changes observed in the proteomic 
analysis. Although the iron-dependent alcohol dehydrogenase 
Adhfe1, a key molecule in the postulated ketone-body forma-
tion process, could not be detected in the proteomics analysis, 
the authors found it upregulated in aortas of STZ-treated mice, 
underpinning their bioinformatics predictions.

STZ destroys insulin-producing β cells, thereby mimicking 
type I diabetes mellitus rather than type II diabetes mellitus in 
mice fed with standard diet.15,16 Type I diabetes mellitus with 
its lack of insulin production, but not type II diabetes mellitus, 
which usually begins with insulin resistance, is frequently asso-
ciated with ketoacidosis (ketone-body overproduction). The 
authors’ hypothesis about an alternative ketone-body formation 
pathway may be limited to the  STZ-induced diabetes mellitus 
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model. Generalizing this pathway as the pathomechanism for 
diabetes mellitus–induced changes in the vasculature requires 
caution because the findings have not been replicated in a type 
II diabetes mellitus model. The authors ruled out the overpro-
duction of ketone bodies as a result of the classical ketone-
body formation by β-oxidation because all molecules involved 
in this pathway were apparently downregulated. Nonetheless, 
the authors’ conclusion of diabetes mellitus leading to a reduc-
tion of fatty acid biosynthesis and upregulation of local ketone-
body production in the vasculature cannot be substantiated 
by immunohistochemistry staining alone. More quantitative 
approaches, including real-time polymerase chain reactions, 
immunoblotting, and enzyme activity assays, would have been 
preferable as a validation method. Interpretation of the bioin-
formatics results without further validation at the metabolite 
level, therefore, remains challenging. Measurements of ketone 
bodies in the circulation and the vessel wall or more detailed 
metabolomics analysis17 to substantiate changes in fatty acid 
biosynthesis could have helped in differentiating between local 
ketone production within the vessel wall versus general over-
production in the liver, which is known to occur under type 
I diabetes mellitus conditions. Another potential confounding 
factor for proteomics studies of the mouse aorta is the perivas-
cular fat tissue. Unless carefully removed, enzymes of perivas-
cular fat tissue will be detected in the proteomics analysis of 
murine aortas. Future studies will have to show the applicabil-
ity of these results in a murine type I diabetes mellitus model 
to human vascular tissue.18

Although modern medicine has fortunately moved on from 
diagnosing diabetes mellitus by tasting the sugary taste of the 
patient’s urine, we still await a cure or at least a prevention of 
its vascular complications.
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